Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Nutrients ; 16(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542737

ABSTRACT

Oxidative stress is a key contributing factor in neurodegeneration, cognitive ageing, cognitive decline, and diminished cognitive longevity. Issues stemming from oxidative stress both in relation to cognition and other areas, such as inflammation, skin health, eye health, and general recovery, have been shown to benefit greatly from antioxidant use. Astaxanthin is a potent antioxidant, which has been outlined to be beneficial for cognitive function both in vitro and in vivo. Given the aforementioned promising effects, research into astaxanthin with a focus on cognitive function has recently been extended to human tissue and human populations. The present critical review explores the effects of astaxanthin on cognitive function and neurodegeneration within human populations and samples with the aim of deciphering the merit and credibility of the research findings and subsequently their potential as a basis for therapeutic use. Implications, limitations, and areas for future research development are also discussed. Key findings include the positive impacts of astaxanthin in relation to improving cognitive function, facilitating neuroprotection, and slowing neurodegeneration within given contexts.


Subject(s)
Antioxidants , Xanthophylls , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Xanthophylls/pharmacology , Xanthophylls/therapeutic use , Oxidative Stress , Cognition
2.
Med Sci Sports Exerc ; 55(12): 2299-2307, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37535313

ABSTRACT

PURPOSE: The use of sodium bicarbonate (SB) as a preexercise ergogenic aid has been extensively studied in short-duration high-intensity exercise. Very few studies have considered the effects of SB ingestion before prolonged high-intensity exercise. The aim of the present study was to determine the effects of a 0.3 g·kg -1 body mass dose of SB ingested before the start of a 16.1-km cycling time trial in cyclists. METHOD: Ten trained male cyclists (age, 31.1 ± 9 yr; height, 1.84 ± 0.05 m; body mass, 82.8 ± 8.5 kg; and V̇O 2peak , 60.4 ± 3.1 mL·kg -1 ·min -1 ) completed this study. Participants ingested 0.3 g·kg -1 in gelatine (SB-G) and enteric capsules (SB-E) 1 wk apart to determine individualized time-to-peak alkalosis for each ingestion form. Using a randomized crossover design, participants then performed simulated 16.1-km time trials after ingestion of SB-G, SB-E, or a placebo. RESULTS: There were significant differences in performance between the SB and placebo ingestion strategies ( f = 5.50, P = 0.014, p η2 = 0.38). Performance time was significantly improved by SB ingestion (mean improvement: 34.4 ± 42.6 s ( P = 0.031) and 40.4 ± 45.5 s ( P = 0.020) for SB-G and SB-E, respectively) compared with the placebo. Gastrointestinal symptoms were lower after SB-E compared with SB-G (36.3 ± 4.5 vs 5.6 ± 3.1 AU, P < 0.001, g = 7.09). CONCLUSIONS: This study demonstrates that increased buffering capacity after acute preexercise SB ingestion can improve endurance cycling time-trial performances. The use of SB could be considered for use in 16.1-km cycling time trials, but further work is required to establish these effects after a preexercise meal.


Subject(s)
Alkalosis , Sodium Bicarbonate , Adult , Humans , Male , Young Adult , Bicycling , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Eating
3.
Eur J Appl Physiol ; 123(6): 1191-1198, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36705750

ABSTRACT

PURPOSE: Sodium bicarbonate (SB) supplementation can improve exercise performance, but few studies consider how effective it is in female athletes. The aim of the study was to establish the effect of individually timed pre-exercise SB ingestion on 2 km rowing time trial (TT) performance in female athletes. METHODS: Eleven female CrossFit® athletes (mean ± SD age, 29 y ± 4 y, body mass, 64.5 kg ± 7.1 kg, height, 1.7 m ± 0.09 m, peak oxygen uptake [VO2peak], 53.8 ± 5.7 mL·kg-1∙min-1). An initial trial identified individual time-to-peak [HCO3-] following enteric-coated 0.3 g·kg-1 BM SB ingestion. Participants then completed a 2 km TT familiarisation followed by a placebo (PLA) or SB trial, using a randomised cross-over design. RESULTS: The ingestion of SB improved rowing performance (514.3 ± 44.6 s) compared to the PLA (529.9 ± 45.4 s) and FAM trials (522.2 ± 43.1 s) (p = 0.001, pη2 = 0.53) which represents a 2.24% improvement compared to the PLA. Individual time-to-peak alkalosis occurred 102.3 ± 22.1 min after ingestion (range 75-150 min) and resulted in increased blood [HCO3-] of 5.5 ± 1.5 mmol⋅L-1 (range = 3.8-7.9 mmol⋅L-1). The change in blood [HCO3-] was significantly correlated with the performance improvement between PLA and SB trials (r = 0.68, p = 0.020). CONCLUSIONS: Ingesting a 0.3 g·kg-1 BM dose of enteric-coated SB improves 2 km rowing performance in female athletes. The improvement is directly related to the extracellular buffering capacity even when blood [HCO3-] does not change ≥ 5.0 mmol⋅L-1.


Subject(s)
Athletic Performance , Water Sports , Humans , Female , Adult , Sodium Bicarbonate/pharmacology , Athletes , Cross-Over Studies , Double-Blind Method , Dietary Supplements , Polyesters
4.
Scand J Med Sci Sports ; 32(1): 165-176, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34551163

ABSTRACT

INTRODUCTION: Physeal injuries have been overlooked in epidemiological research in youth sports. Our prospective study investigated the incidence, severity, and burden of physeal injuries in a youth elite football academy. METHODS: In total, 551 youth male football players from under-9 to under-19 were included and observed over four consecutive seasons. Injuries involving the physis were diagnosed and recorded according to type, location, and diagnosis. Injury incidence (II), severity (days lost), and injury burden (IB) were calculated per squad per season (25 players/squad). RESULTS: There were 307 physeal injuries: 262 apophyseal (85%), 26 physeal (9%), 2 epiphyseal (1%), and 17 other physeal injuries (5%) with 80% (n=245) causing time-loss. The overall mean incidence of time-loss physeal injuries was 6 injuries/squad-season, leading to a total of 157 days lost/squad-season. The U-16s had the highest burden with 444 days lost per squad-season [median: 20 (95% CI: 12-30) days; II: 10 (95% CI: 7.3.1-13.4)]. Apophyseal injuries of the hip-pelvis resulted in the greatest burden [median: 13 (95% CI: 10-17); II: 2.5 (95% CI: 2.1-3.0)]. Peak apophyseal injury incidence per body parts occurred in U-11 for foot-ankle (II: 2.4; 95% CI: 1.0-4.9), U-14 for knee (II: 4.5; 95% CI: 2.7-7.1), and U-17 for hip-pelvis (II: 6.4; 95% CI: 4.2-9.3). CONCLUSION: Physeal injuries accounted for a quarter of all-time loss with the largest injury burden in U-16. Most physeal injuries involved the lower limb and affected the apophysis. Physeal and apophyseal injuries incidence, burden, and pattern vary substantially depending on age. Hip-pelvic apophyseal injuries accounted for the largest injury burden.


Subject(s)
Athletic Injuries , Soccer , Adolescent , Humans , Male , Athletic Injuries/epidemiology , Incidence , Prospective Studies , Seasons
5.
Sports Med ; 52(3): 505-526, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34687438

ABSTRACT

BACKGROUND: Extracellular buffering supplements [sodium bicarbonate (SB), sodium citrate (SC), sodium/calcium lactate (SL/CL)] are ergogenic supplements, although questions remain about factors which may modify their effect. OBJECTIVE: To quantify the main effect of extracellular buffering agents on exercise outcomes, and to investigate the influence of potential moderators on this effect using a systematic review and meta-analytic approach. METHODS: This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were searched for articles that were screened according to inclusion/exclusion criteria. Bayesian hierarchical meta-analysis and meta-regression models were used to investigate pooled effects of supplementation and moderating effects of a range of factors on exercise and biomarker responses. RESULTS: 189 articles with 2019 participants were included, 158 involving SB supplementation, 30 with SC, and seven with CL/SL; four studies provided a combination of buffering supplements together. Supplementation led to a mean estimated increase in blood bicarbonate of + 5.2 mmol L-1 (95% credible interval (CrI) 4.7-5.7). The meta-analysis models identified a positive overall effect of supplementation on exercise capacity and performance compared to placebo [ES0.5 = 0.17 (95% CrI 0.12-0.21)] with potential moderating effects of exercise type and duration, training status and when the exercise test was performed following prior exercise. The greatest ergogenic effects were shown for exercise durations of 0.5-10 min [ES0.5 = 0.18 (0.13-0.24)] and > 10 min [ES0.5 = 0.22 (0.10-0.33)]. Evidence of greater effects on exercise were obtained when blood bicarbonate increases were medium (4-6 mmol L-1) and large (> 6 mmol L-1) compared with small (≤ 4 mmol L-1) [ßSmall:Medium = 0.16 (95% CrI 0.02-0.32), ßSmall:Large = 0.13 (95% CrI - 0.03 to 0.29)]. SB (192 outcomes) was more effective for performance compared to SC (39 outcomes) [ßSC:SB = 0.10 (95% CrI - 0.02 to 0.22)]. CONCLUSIONS: Extracellular buffering supplements generate large increases in blood bicarbonate concentration leading to positive overall effects on exercise, with sodium bicarbonate being most effective. Evidence for several group-level moderating factors were identified. These data can guide an athlete's decision as to whether supplementation with buffering agents might be beneficial for their specific aims.


Subject(s)
Exercise Tolerance , Performance-Enhancing Substances , Bayes Theorem , Dietary Supplements , Humans , Performance-Enhancing Substances/pharmacology , Sodium Bicarbonate/pharmacology
6.
Eur J Appl Physiol ; 121(12): 3283-3295, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34417881

ABSTRACT

As a nitric oxide (NO) enhancer, citrulline malate (CM) has recently been touted as a potential ergogenic aid to both resistance and high-intensity exercise performance, as well as the recovery of muscular performance. The mechanism has been associated with enhanced blood flow to active musculature, however, it might be more far-reaching as either ammonia homeostasis could be improved, or ATP production could be increased via greater availability of malate. Moreover, CM might improve muscle recovery via increased nutrient delivery and/or removal of waste products. To date, a single acute 8 g dose of CM on either resistance exercise performance or cycling has been the most common approach, which has produced equivocal results. This makes the effectiveness of CM to improve exercise performance difficult to determine. Reasons for the disparity in conclusions seem to be due to methodological discrepancies such as the testing protocols and the associated test-retest reliability, dosing strategy (i.e., amount and timing), and the recent discovery of quality control issues with some manufacturers stated (i.e., citrulline:malate ratios). Further exploration of the optimal dose is therefore required including quantification of the bioavailability of NO, citrulline, and malate following ingestion of a range of CM doses. Similarly, further well-controlled studies using highly repeatable exercise protocols with a large aerobic component are required to assess the mechanisms associated with this supplement appropriately. Until such studies are completed, the efficacy of CM supplementation to improve exercise performance remains ambiguous.


Subject(s)
Athletic Performance , Citrulline/analogs & derivatives , Malates/pharmacology , Performance-Enhancing Substances/pharmacology , Citrulline/pharmacology , Dietary Supplements , Humans
7.
PLoS One ; 16(7): e0248456, 2021.
Article in English | MEDLINE | ID: mdl-34197456

ABSTRACT

The timing of sodium bicarbonate (NaHCO3) supplementation has been suggested to be most optimal when coincided with a personal time that bicarbonate (HCO3-) or pH peaks in the blood following ingestion. However, the ergogenic mechanisms supporting this ingestion strategy are strongly contested. It is therefore plausible that NaHCO3 may be ergogenic by causing beneficial shifts in the strong ion difference (SID), though the time course of this blood acid base balance variable is yet to be investigated. Twelve highly trained, adolescent swimmers (age: 15.9 ± 1.0 years, body mass: 65.3 ± 9.6 kg) consumed their typical pre-competition nutrition 1-3 hours before ingesting 0.3 g∙kg BM-1 NaHCO3 in gelatine capsules. Capillary blood samples were then taken during seated rest on nine occasions (0, 60, 75, 90, 105, 120, 135, 150, 165 min post-ingestion) to identify the time course changes in HCO3-, pH, and the SID. No significant differences were found in the time to peak of each blood measure (HCO3-: 130 ± 35 min, pH: 120 ± 38 min, SID: 98 ± 37 min; p = 0.08); however, a large effect size was calculated between time to peak HCO3- and the SID (g = 0.88). Considering that a difference between time to peak blood HCO3- and the SID was identified in adolescents, future research should compare the ergogenic effects of these two individualized NaHCO3 ingestion strategies compared to a traditional, standardized approach.


Subject(s)
Acid-Base Equilibrium/physiology , Athletes , Bicarbonates/blood , Sodium Bicarbonate/administration & dosage , Adolescent , Eructation/etiology , Female , Humans , Hydrogen-Ion Concentration , Male , Nausea/etiology , Performance-Enhancing Substances/administration & dosage , Performance-Enhancing Substances/adverse effects , Performance-Enhancing Substances/chemistry , Sodium Bicarbonate/adverse effects , Sodium Bicarbonate/chemistry , Swimming
9.
Orthop J Sports Med ; 9(3): 2325967121999113, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33869641

ABSTRACT

BACKGROUND: The association between injury risk and skeletal maturity in youth soccer has received little attention. PURPOSE: To prospectively investigate injury patterns and incidence in relation to skeletal maturity in elite youth academy soccer players and to determine the injury risks associated with the skeletal maturity status, both overall and to the lower limb apophysis. STUDY DESIGN: Descriptive epidemiology study. METHODS: All injuries that required medical attention and led to time loss were recorded prospectively during 4 consecutive seasons in 283 unique soccer players from U-13 (12 years of age) to U-19 (18 years). The skeletal age (SA) was assessed in 454 player-seasons using the Fels method, and skeletal maturity status (SA minus chronological age) was classified as follows: late, SA >1 year behind chronological age; normal, SA ±1 year of chronological age; early, SA >1 year ahead of chronological age; and mature, SA = 18 years. An adjusted Cox regression model was used to analyze the injury risk. RESULTS: A total of 1565 injuries were recorded; 60% were time-loss injuries, resulting in 17,772 days lost. Adjusted injury-free survival analysis showed a significantly greater hazard ratio (HR) for different status of skeletal maturity: early vs normal (HR = 1.26 [95% CI, 1.11-1.42]; P < .001) and early vs mature (HR = 1.35 [95% CI, 1.17-1.56]; P < .001). Players who were skeletally mature at the wrist had a substantially decreased risk of lower extremity apophyseal injuries (by 45%-61%) compared with late (P < .05), normal (P < .05), and early (P < .001) maturers. CONCLUSION: Musculoskeletal injury patterns and injury risks varied depending on the players' skeletal maturity status. Early maturers had the greatest overall adjusted injury risk. Players who were already skeletally mature at the wrist had the lowest risk of lower extremity apophyseal injuries but were still vulnerable for hip and pelvis apophyseal injuries.

10.
J Sci Med Sport ; 24(1): 92-97, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32660833

ABSTRACT

OBJECTIVES: This study aimed to investigate whether supplementation with 12 mg⋅day-1 astaxanthin for 7 days can improve exercise performance and metabolism during a 40 km cycling time trial. DESIGN: A randomised, double-blind, crossover design was employed. METHODS: Twelve recreationally trained male cyclists (VO2peak: 56.5 ± 5.5 mL⋅kg-1⋅min-1, Wmax: 346.8  ± 38.4 W) were recruited. Prior to each experimental trial, participants were supplemented with either 12 mg⋅day-1 astaxanthin or an appearance-matched placebo for 7 days (separated by 14 days of washout). On day 7 of supplementation, participants completed a 40 km cycling time trial on a cycle ergometer, with indices of exercise metabolism measured throughout. RESULTS: Time to complete the 40 km cycling time trial was improved by 1.2 ± 1.7% following astaxanthin supplementation, from 70.76 ± 3.93 min in the placebo condition to 69.90 ± 3.78 min in the astaxanthin condition (mean improvement = 51 ± 71 s, p = 0.029, g = 0.21). Whole-body fat oxidation rates were also greater (+0.09 ± 0.13 g⋅min-1, p = 0.044, g = 0.52), and the respiratory exchange ratio lower (-0.03 ± 0.04, p = 0.024, g = 0.60) between 39-40 km in the astaxanthin condition. CONCLUSIONS: Supplementation with 12 mg⋅day-1 astaxanthin for 7 days provided an ergogenic benefit to 40 km cycling time trial performance in recreationally trained male cyclists and enhanced whole-body fat oxidation rates in the final stages of this endurance-type performance event.


Subject(s)
Adipose Tissue/metabolism , Bicycling/physiology , Fibrinolytic Agents/pharmacology , Performance-Enhancing Substances/pharmacology , Adult , Confidence Intervals , Cross-Over Studies , Double-Blind Method , Fibrinolytic Agents/administration & dosage , Humans , Male , Oxidation-Reduction/drug effects , Performance-Enhancing Substances/administration & dosage , Recreation , Sports Nutritional Physiological Phenomena/drug effects , Time Factors , Xanthophylls/administration & dosage , Xanthophylls/pharmacology
11.
Br J Sports Med ; 55(9): 493-500, 2021 May.
Article in English | MEDLINE | ID: mdl-33199359

ABSTRACT

OBJECTIVE: Investigate the incidence and burden of injuries by age group in youth football (soccer) academy players during four consecutive seasons. METHODS: All injuries that caused time-loss or required medical attention (as per consensus definitions) were prospectively recorded in 551 youth football players from under 9 years to under 19 years. Injury incidence (II) and burden (IB) were calculated as number of injuries per squad season (s-s), as well as for type, location and age groups. RESULTS: A total of 2204 injuries were recorded. 40% (n=882) required medical attention and 60% (n=1322) caused time-loss. The total time-loss was 25 034 days. A squad of 25 players sustained an average of 30 time-loss injuries (TLI) per s-s with an IB of 574 days lost per s-s. Compared with the other age groups, U-16 players had the highest TLI incidence per s-s (95% CI lower-upper): II= 59 (52 to 67); IB=992 days; (963 to 1022) and U-18 players had the greatest burden per s-s: II= 42.1 (36.1 to 49.1); IB= 1408 days (1373 to 1444). Across the cohort of players, contusions (II=7.7/s-s), sprains (II=4.9/s-s) and growth-related injuries (II=4.3/s-s) were the most common TLI. Meniscus/cartilage injuries had the greatest injury severity (95% CI lower-upper): II= 0.4 (0.3 to 0.7), IB= 73 days (22 to 181). The burden (95% CI lower-upper) of physeal fractures (II= 0.8; 0.6 to 1.2; IB= 58 days; 33 to 78) was double than non-physeal fractures. SUMMARY: At this youth football academy, each squad of 25 players averaged 30 injuries per season which resulted in 574 days lost. The highest incidence of TLI occurred in under-16 players, while the highest IB occurred in under-18 players.


Subject(s)
Soccer/injuries , Youth Sports/injuries , Absenteeism , Adolescent , Age Factors , Athletes , Athletic Injuries/classification , Athletic Injuries/epidemiology , Body Height , Body Mass Index , Child , Humans , Incidence , Male , Physical Conditioning, Human/adverse effects , Physical Conditioning, Human/statistics & numerical data , Prospective Studies , Qatar/epidemiology , Seasons , Soccer/statistics & numerical data , Time Factors , Youth Sports/statistics & numerical data
12.
Res Sports Med ; 28(4): 469-483, 2020.
Article in English | MEDLINE | ID: mdl-32482095

ABSTRACT

BACKGROUND:  In the elderly, low protein intake exacerbates the effects of sarcopenia and anabolic resistance.  Protein supplementation to maximise muscle protein synthesis, may be an effective intervention. Aim: To determine the effects of a low/high dose of protein, ingested immediately post-exercise, during resistance training in novice elderly males. Method: 24 elderly (70.5±5.1, years) males were recruited (body mass: 92.4±14.9 kg; fat free mass: 61.4±7.6 kg).  After exclusion criteria, 18 males participated. Participants continued their normal dietary intake and were allocated into two matched groups, then randomly assigned to either a 20 g or 40 g dose intervention. Following determination of 1 repetition maximum (1RM), participants completed 10 x 3d-1 wk resistance training and consumed protein supplements immediately following exercise. Results: Significant improvements in chest press (p = 0.014, ɳp2 0.34) shoulder press (p = 0.005, ɳp2 0.43) and leg extension strength (p = 0.014, ɳp2 0.34), were observed following the 40 g dose, resulting in performance improvements of 19.1, 21.1, and 16.1% respectively, compared to the 20 g dose. Conclusion:Findings suggest that ingesting 40 g of protein following resistance exercise, produces greater responses to training and may be an important nutritional strategy when prescribing resistance exercise in the elderly.


Subject(s)
Adaptation, Physiological , Dietary Supplements , Muscle Strength/physiology , Resistance Training/methods , Weight Lifting/physiology , Whey Proteins/administration & dosage , Age Factors , Aged , Aged, 80 and over , Body Fat Distribution , Body Mass Index , Humans , Male , Middle Aged
13.
Front Nutr ; 6: 155, 2019.
Article in English | MEDLINE | ID: mdl-31632978

ABSTRACT

The aim of this study was to assess the effects of post-exercise sodium bicarbonate (NaHCO3) ingestion (0.3 g.kg-1 body mass) on the recovery of acid-base balance (pH, HCO 3 - , and the SID) and subsequent exercise performance in elite boxers. Seven elite male professional boxers performed an initial bout of exhaustive exercise comprising of a boxing specific high-intensity interval running (HIIR) protocol, followed by a high-intensity run to volitional exhaustion (TLIM1). A 75 min passive recovery then ensued, whereby after 10 min recovery, participants ingested either 0.3 g.kg-1 body mass NaHCO3, or 0.1 g.kg-1 body mass sodium chloride (PLA). Solutions were taste matched and administered double-blind. Participants then completed a boxing specific punch combination protocol, followed by a second high-intensity run to volitional exhaustion (TLIM2). Both initial bouts of TLIM1 were well matched between PLA and NaHCO3 (ICC; r = 0.94, p = 0.002). The change in performance from TLIM1 to TLIM2 was greater following NaHCO3 compared to PLA (+164 ± 90 vs. +73 ± 78 sec; p = 0.02, CI = 45.1, 428.8, g = 1.0). Following ingestion of NaHCO3, pH was greater prior to TLIM2 by 0.11 ± 0.02 units (1.4%) (p < 0.001, CI = 0.09, 0.13, g = 3.4), whilst HCO 3 - was greater by 8.8 ± 1.5 mmol.l-1 (26.3%) compared to PLA (p < 0.001, CI = 7.3, 10.2, g = 5.1). The current study suggests that these significant increases in acid base balance during post-exercise recovery facilitated the improvement in the subsequent bout of exercise. Future research should continue to explore the role of NaHCO3 supplementation as a recovery aid in boxing and other combat sports.

14.
J Sports Sci ; 37(13): 1464-1471, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30668281

ABSTRACT

This study investigated the effects of two separate doses of sodium bicarbonate (NaHCO3) on 4 km time trial (TT) cycling performance and post-exercise acid base balance recovery in hypoxia. Fourteen club-level cyclists completed four cycling TT's, followed by a 40 min passive recovery in normobaric hypoxic conditions (FiO2 = 14.5%) following one of either: two doses of NaHCO3 (0.2 g.kg-1 BM; SBC2, or 0.3 g.kg-1 BM; SBC3), a taste-matched placebo (0.07 g.kg-1 BM sodium chloride; PLA), or a control trial in a double-blind, randomized, repeated-measures and crossover design study. Compared to PLA, TT performance was improved following SBC2 (p = 0.04, g = 0.16, very likely beneficial), but was improved to a greater extent following SBC3 (p = 0.01, g = 0.24, very likely beneficial). Furthermore, a likely benefit of ingesting SBC3 over SBC2 was observed (p = 0.13, g = 0.10), although there was a large inter-individual variation. Both SBC treatments achieved full recovery within 40 min, which was not observed in either PLA or CON following the TT. In conclusion, NaHCO3 improves 4 km TT performance and acid base balance recovery in acute moderate hypoxic conditions, however the optimal dose warrants an individual approach.


Subject(s)
Acid-Base Equilibrium/drug effects , Athletic Performance/physiology , Bicycling/physiology , Performance-Enhancing Substances/administration & dosage , Sodium Bicarbonate/administration & dosage , Adolescent , Adult , Cross-Over Studies , Double-Blind Method , Female , Gastrointestinal Diseases/chemically induced , Heart Rate , Humans , Hydrogen-Ion Concentration , Hypoxia , Male , Oxygen/blood , Perception , Performance-Enhancing Substances/adverse effects , Performance-Enhancing Substances/blood , Physical Exertion , Sodium Bicarbonate/adverse effects , Sodium Bicarbonate/blood , Young Adult
15.
J Sports Sci ; 37(3): 339-346, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30058956

ABSTRACT

This investigation assessed the effect of dietary nitrate (NO3-) supplementation, in the form of beetroot juice (BR), on repeat-sprint performance in normoxia and normobaric hypoxia. 12 male team-sport athletes (age 22.3 ± 2.6 y, VO2peak 53.1 ± 8.7 mL.kg-1.min-1) completed three exercise trials involving a 10 min submaximal warm-up and 4 sets of cycling repeat-sprint efforts (RSE; 9 × 4 s) at sea level (CON), or at 3000 m simulated altitude following acute supplementation (140 mL) with BR (HYPBR; 13 mmol NO3-) or NO3-depleted BR placebo (HYPPLA). Peak (PPO) and mean (MPO) power output, plus work decrement were recorded during the RSE task, while oxygen consumption (VO2) was measured during the warm-up. There were no significant differences observed between HYPBR and HYPPLA for PPO or MPO; however, work decrement was reduced in the first RSE set in HYPBR compared with HYPPLA. There was a moderate effect for VO2 to be lower following BR at the end of the 10 min warm-up (ES = 0.50 ± 0.51). Dietary NO3- may not improve repeat-sprint performance in hypoxia but may reduce VO2 during submaximal exercise. Therefore, BR supplementation may be more effective for performance improvement during predominantly aerobic exercise.


Subject(s)
Athletic Performance , Bicycling/physiology , Dietary Supplements , Fruit and Vegetable Juices , Nitrates/administration & dosage , Adult , Altitude , Athletes , Beta vulgaris , Exercise Test , Humans , Hypoxia , Male , Oxygen Consumption , Sports Nutritional Physiological Phenomena , Young Adult
16.
Int J Sport Nutr Exerc Metab ; 29(1): 39-45, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-29757047

ABSTRACT

The nutritional intake of ultraendurance athletes is often poorly matched with the requirements of the sport. Nutrition knowledge is a mediating factor to food choice that could correct such imbalances. Therefore, the purpose of this study was to develop and validate a questionnaire to assess the nutrition knowledge of ultraendurance athletes. Nutritional knowledge was assessed using a modified sports nutrition knowledge questionnaire (ULTRA-Q). Four independent assessors with specialization in sports nutrition confirmed the content validity of the ULTRA-Q. Registered sports nutritionists, registered dietitians, and those without nutrition training completed the ULTRA-Q on two separate occasions. After the first completion, a significant difference in nutrition scores between groups (p ≤ .001) provided evidence of construct validity. After the second completion, intraclass correlation coefficients comparing nutrition scores between time points (.75-.95) provided evidence of test-retest reliability. Subsequently, experienced ultraendurance athletes (male: n = 74 and female: n = 27) completed the ULTRA-Q. Athletes also documented their sources of nutrition knowledge for ultraendurance events. The total nutrition knowledge score for ultraendurance athletes was 68.3% ± 9.5%, and there were no significant differences in knowledge scores between males and females (67.4% ± 9.6% and 70.7% ± 9.3%, respectively) or between runners and triathletes (69.1% ± 9.7% and 65.1% ± 9.4%, respectively). In general, it appeared that ultraendurance athletes favored other athletes (73%) over nutrition experts (8%) as a source of nutritional information. The findings of this study indicate that ultraendurance athletes had a reasonable level of nutrition knowledge, but interathlete variability suggests a need for targeted nutrition education.

17.
Eur J Appl Physiol ; 118(12): 2489-2498, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30196448

ABSTRACT

PURPOSE: Exacerbated hydrogen cation (H+) production is suggested to be a key determinant of fatigue in acute hypoxic conditions. This study, therefore, investigated the effects of NaHCO3 ingestion on repeated 4 km TT cycling performance and post-exercise acid-base balance recovery in acute moderate hypoxic conditions. METHODS: Ten male trained cyclists completed four repeats of 2 × 4 km cycling time trials (TT1 and TT2) with 40 min passive recovery, each on different days. Each TT series was preceded by supplementation of one of the 0.2 g kg-1 BM NaHCO3 (SBC2), 0.3 g kg-1 BM NaHCO3 (SBC3), or a taste-matched placebo (0.07 g kg-1 BM sodium chloride; PLA), administered in a randomized order. Supplements were administered at a pre-determined individual time to peak capillary blood bicarbonate concentration ([HCO3-]). Each TT series was also completed in a normobaric hypoxic chamber set at 14.5% FiO2 (~ 3000 m). RESULTS: Performance was improved following SBC3 in both TT1 (400.2 ± 24.1 vs. 405.9 ± 26.0 s; p = 0.03) and TT2 (407.2 ± 29.2 vs. 413.2 ± 30.8 s; p = 0.01) compared to PLA, displaying a very likely benefit in each bout. Compared to SBC2, a likely and possible benefit was also observed following SBC3 in TT1 (402.3 ± 26.5 s; p = 0.15) and TT2 (410.3 ± 30.8 s; p = 0.44), respectively. One participant displayed an ergolytic effect following SBC3, likely because of severe gastrointestinal discomfort, as SBC2 still provided ergogenic effects. CONCLUSION: NaHCO3 ingestion improves repeated exercise performance in acute hypoxic conditions, although the optimal dose is likely to be 0.3 g kg-1 BM.


Subject(s)
Alkalosis/physiopathology , Exercise Tolerance , High-Intensity Interval Training , Hypoxia/physiopathology , Acid-Base Equilibrium , Adult , Alkalosis/drug therapy , Bicarbonates/blood , Carbonates/administration & dosage , Carbonates/therapeutic use , Humans , Male , Random Allocation
18.
Front Nutr ; 5: 35, 2018.
Article in English | MEDLINE | ID: mdl-29868599

ABSTRACT

Blood alkalosis, as indicated by an increased blood bicarbonate concentration and pH, has been shown to be beneficial for exercise performance. Sodium bicarbonate, sodium citrate, and sodium or calcium lactate, can all result in increased circulating bicarbonate and have all independently been shown to improve exercise capacity and performance under various circumstances. Although there is considerable evidence demonstrating the efficacy of these supplements in several sports-specific situations, it is commonly acknowledged that their efficacy is equivocal, due to contrasting evidence. Herein, we discuss the physiological and environmental factors that may modify the effectiveness of these supplements including, (i) absolute changes in circulating bicarbonate; (ii) supplement timing, (iii) the exercise task performed, (iv) monocarboxylate transporter (MCT) activity; (v) training status, and (vi) associated side-effects. The aim of this narrative review is to highlight the factors which may modify the response to these supplements, so that individuals can use this information to attempt to optimize supplementation and allow the greatest possibility of an ergogenic effect.

19.
J Strength Cond Res ; 32(9): 2529-2541, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29781933

ABSTRACT

Bridge, CA, Sparks, SA, McNaughton, LR, Close, GL, Hausen, M, Gurgel, J, and Drust, B. Repeated exposure to taekwondo combat modulates the physiological and hormonal responses to subsequent bouts and recovery periods. J Strength Cond Res 32(9): 2529-2541, 2018-This study examined the physiological and hormonal responses to successive taekwondo combats using an ecologically valid competition time structure. Ten elite male international taekwondo competitors (age 19 ± 3 years) took part in a simulated championship event. The competitors performed 4 combats that were interspersed with different recovery intervals (63 ± 4, 31 ± 3 and 156 ± 5 minutes, respectively). Heart rate (HR) was measured during the combats and venous blood samples were obtained both before and after each combat to determine the plasma metabolite and hormone concentrations. The plasma noradrenaline (21.8 ± 12.8 vs. 15.0 ± 7.0 nmol·l) and lactate (13.9 ± 4.2 vs. 10.5 ± 3.2 mmol·l) responses were attenuated (p < 0.05) between combat 1 and 4. Higher (p < 0.05) HR responses were evident in the final combat when compared with the earlier combats. Higher (p < 0.05) resting HR (139 ± 10 vs. 127 ± 12 b·min), plasma lactate (3.1 ± 1.2 vs. 2.0 ± 0.7 mmol·l), glycerol (131 ± 83 vs. 56 ± 38 µmol·l) and nonesterified free fatty acid (0.95 ± 0.29 vs. 0.71 ± 0.28 mmol·l) concentrations were measured before combat 3 compared with combat 1. Repeated exposure to taekwondo combat using an ecologically valid time structure modulates the physiological and hormonal responses to subsequent bouts and recovery periods. Strategies designed to assist competitors to effectively manage the metabolic changes associated with the fight schedule and promote recovery between the bouts may be important during championship events.


Subject(s)
Martial Arts/physiology , Adolescent , Adult , Biomarkers/blood , Heart Rate/physiology , Humans , Lactic Acid/blood , Male , Norepinephrine/blood , Young Adult
20.
Eur J Appl Physiol ; 118(3): 607-615, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29344729

ABSTRACT

Acute moderate hypoxic exposure can substantially impair exercise performance, which occurs with a concurrent exacerbated rise in hydrogen cation (H+) production. The purpose of this study was therefore, to alleviate this acidic stress through sodium bicarbonate (NaHCO3) supplementation and determine the corresponding effects on severe-intensity intermittent exercise performance. Eleven recreationally active individuals participated in this randomised, double-blind, crossover study performed under acute normobaric hypoxic conditions (FiO2% = 14.5%). Pre-experimental trials involved the determination of time to attain peak bicarbonate anion concentrations ([HCO3-]) following NaHCO3 ingestion. The intermittent exercise tests involved repeated 60-s work in their severe-intensity domain and 30-s recovery at 20 W to exhaustion. Participants ingested either 0.3 g kg bm-1 of NaHCO3 or a matched placebo of 0.21 g kg bm-1 of sodium chloride prior to exercise. Exercise tolerance (+ 110.9 ± 100.6 s; 95% CI 43.3-178 s; g = 1.0) and work performed in the severe-intensity domain (+ 5.8 ± 6.6 kJ; 95% CI 1.3-9.9 kJ; g = 0.8) were enhanced with NaHCO3 supplementation. Furthermore, a larger post-exercise blood lactate concentration was reported in the experimental group (+ 4 ± 2.4 mmol l-1; 95% CI 2.2-5.9; g = 1.8), while blood [HCO3-] and pH remained elevated in the NaHCO3 condition throughout experimentation. In conclusion, this study reported a positive effect of NaHCO3 under acute moderate hypoxic conditions during intermittent exercise and therefore, may offer an ergogenic strategy to mitigate hypoxic induced declines in exercise performance.


Subject(s)
Altitude , Exercise , Physical Endurance/drug effects , Sodium Bicarbonate/pharmacology , Administration, Oral , Adult , Humans , Lactic Acid/blood , Male , Oxygen/metabolism , Sodium Bicarbonate/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...